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1 Exponents

1.1 Introduction

Whenever we use expressions like 73 or 25 we are using exponents.

The symbol 25 means 2 × 2 × 2 × 2 × 2︸ ︷︷ ︸
5 factors

. This symbol is spoken as ‘two raised to the

power five’, ‘two to the power five’ or simply ‘two to the five’. The expression 25 is just a
shorthand way of writing ‘multiply 2 by itself 5 times’. The number 2 is called the base,
and 5 the exponent.

Similarly, if b is any real number then b3 stands for b × b × b. Here b is the base, and 3
the exponent.

If n is a whole number, bn stands for b × b × · · · × b︸ ︷︷ ︸
n factors

. We say that bn is written in

exponential form, and we call b the base and n the exponent, power or index.

Special names are used when the exponent is 2 or 3. The expression b2 is usually
spoken as ‘b squared’, and the expression b3 as ‘b cubed’. Thus ‘two cubed’ means
23 = 2 × 2 × 2 = 8.

1.2 Exponents with the Same Base

We will begin with a very simple definition. If b is any real number and n is a positive
integer then bn means b multiplied by itself n times. The rules for the behaviour of
exponents follow naturally from this definition.

First, let’s try multiplying two numbers in exponential form. For example

23 × 24 = (2 × 2 × 2) × (2 × 2 × 2 × 2)

= 2 × 2 × 2 × 2 × 2 × 2 × 2︸ ︷︷ ︸
7 factors

= 27

= 23+4.

Examples like this suggest the following general rule.

Rule 1: bn × bm = bn+m.

That is, to multiply two numbers in exponential form (with the same base), we add their
exponents.

Let’s look at what happens when we divide two numbers in exponential form. For example,

36

34
=

3 × 3 × 3 × 3 × 3 × 3

3 × 3 × 3 × 3

= 3 × 3 × 3 × 3 × 3 × 3

3 × 3 × 3 × 3
= 3 × 3

= 32

= 36−4.
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This leads us to another general rule.

Rule 2: bn

bm = bn−m.

In words, to divide two numbers in exponential form (with the same base) , we subtract
their exponents.

We have not yet given any meaning to negative exponents, so n must be greater than m
for this rule to make sense. In a moment we will see what happens if n is not greater than
m.

Now look at what happens when a number in exponential form is raised to some power.
For example,

(22)3 = (2 × 2) × (2 × 2) × (2 × 2)

= 26

= 22×3.

This suggest another general rule.

Rule 3: (bm)n = bmn

That is, to raise a number in exponential form to a power, we multiply the exponents.

Examples

52 × 54 = 52+4 = 56 = 15625

2.54 × 2.53

2.5
= 2.54+3−1 = 2.56 = 244.140625

(
π5

π3
)3 = (π5−3)3 = (π2)3 = π2×3 = π6 ≈ 961.389

3n+4

3m+1
‘simplifies’ to 3n−m+3.

x3y4

xy2
simplifies to x2y2.

Exercises
Evaluate the following expressions using a calculator where necessary.

1. 34 2. 42 × 33 3. 1.57

1.54 4. (2.72)3 5. (3 + 2.23)4

Simplify these, or at least change them around a bit.

6. 22x+y

2x 7. x7x9.5

x1.2 8. 4x+3y

9. (3x)z 10. 3x+2z

3
z
4
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Until now we have only considered exponents which are positive integers, such as 7 or
189. Our intention is to extend this notation to cover exponents which are not necessarily
positive integers, for example −5, or 113

31
, or numbers such as π ≈ 3.14159. Just as we

can make sense of expressions like 5189, we want to be able to make sense of expressions
such as 5

113
31 . But more than this, we want to make sense of these expressions in such a

way that rules 1, 2 and 3 remain valid. It is not at all obvious how we should interpret
an expression 5

113
31 . It does not really make sense to think of it as 5 multiplied by itself

113
31

times.

Our plan is this: if we want rules 1, 2 and 3 to hold for general exponents then we will
try defining expressions like 5

113
31 to be whatever they must be in order that rules 1, 2 and

3 remain valid. In other words, we will insist that rules 1, 2 and 3 remain valid for these
more general exponents, and hope that this requirement will tell us what the definitions
of expressions like 5

113
31 must be.

Let us begin by extending the notation to include an exponent equal to 0. We want to
make sense of the expression b0 in such a way that rules 1, 2 and 3 hold. What happens
to rule 2 when n = m? Rule 2 gives

bn

bn
= bn−n or

1 = b0.

Until now we have not attached any meaning to the expression b0. It doesn’t make sense
to talk about a number being multiplied by itself 0 times. However, if we want rule 2
to continue to be valid when n = m then we must define the expression b0 to mean the
number 1.

If b �= 0 then we define b0 to be equal to 1. We do not attempt to give any meaning to the
expression 00. It remains undefined.

Using this definition we can check that rules 1 and 3 also remain valid. For example, to
check that rule 1 still holds, if n is a whole number and m = 0 then rule 1 gives

bn × b0 = bn

which is okay because b0 = 1.

To be strictly correct we should also check that rule 1 remains valid in the case that m = 0
and n = 0. You should check that this is true and that rule 3 also remains valid under
this definition of b0.

We initially had no idea of how to extend our notation to cover a zero exponent, but if
we wish rules 1, 2 and 3 to remain valid for such an exponent then the definition b0 = 1
is forced on us. We have no choice.

Okay, we have come up with a sensible definition of b0 by taking m = n in rule 2 and
seeing what b0 must be if rule 2 is to remain valid. To come up with a suitable meaning
for negative exponents we can take n < m in rule 2. For example, let’s try n = 2 and
m = 3.
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Rule 2 gives

b2

b3
= b−1 or

1

b
= b−1.

This suggests that we should define b−1 to be equal to 1
b
. This definition, too, makes sense

for all values of b except b = 0.

In a similar way we can see that we should define b−n to mean 1
bn , except when b = 0,

in which case it is undefined. You should convince yourself of this by showing that the
requirement that rule 2 remains valid forces on us the definitions

b−2 =
1

b2
and

b−3 =
1

b3
.

If n is a positive integer (for example n = 17 or n = 178) then we define b−n to be equal
to 1

bn . This definition makes sense for all values of b except b = 0, in which case the
expression b−n remains undefined.

You should check that, with this definition, rules 1 and 3 also remain valid.

Examples
312−3×4 = 30 = 1

2−1 = 1
21 = 1

2

23 × 1.1−4+2 = 23 × 1.1−2 = 8 × 0.826446281 = 6.611570248

(x−1 + x−3)−1 =
1

x−1 + x−3

=
1

1
x

+ 1
x3

=
1

x2+1
x3

=
x3

x2 + 1

Exercises
Evaluate the following expressions.

11. 5−1 12. 32

2−3 13. 56−9 14. 2.24−2×3 15. (6−2)2

Simplify the following expressions.

16. (x
1
2 + y

1
2 )(x

1
2 − y

1
2 ) 17. (x

1
4 − y

1
4 )(x

3
4 + x

1
2 y

1
4 + x

1
4 y

1
2 + y

3
4 )

18. x
3
2 +y

1
2 x

x
1
2 +y

1
2

19.
(

x
1
2 (x−y)

(x
1
2 −y

1
2 )(x

1
2 +y

1
2 )

)2

20. (x
1
2 )2
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Pause for a moment and look at what has been achieved. We have been able to give
a meaning to bn for all integer values of n, positive, negative, and zero, and we have
done it in such a way that all three of the rules above still hold. We can give meaning
to expressions like (35

7
)13 and π−7. We have come quite a way, but there are a lot of

exponents that we cannot yet handle. For example, what meaning would we give to an
expression like 5

7
9 ? Our next task is to give a suitable meaning to expressions involving

fractional powers.

Let us start with b
1
2 . We want to give meaning to this expression in such a way that the

rules 1, 2 and 3 remain valid. If rule 2 is to hold then we must have

b
1
2 × b

1
2 = b

1
2
+ 1

2 = b1 = b.

Let’s be specific and take b = 4. Then, 4
1
2 × 4

1
2 = 4, so 4

1
2 is equal to a number whose

square is 4. There are two numbers whose square is 4. They are 2 and −2. We define 4
1
2

to be the positive square root of 4. That is, 2.

In general, b
1
2 is defined to be the positive square root of b, also written

√
b. So b

1
2 =

√
b.

Of course, b must be positive if b
1
2 is to have any meaning for us, because if we take any

real number and multiply itself by itself then we get a positive number. (Actually there
is a way of giving meaning to the square root of a negative number. This leads to the
notion of complex numbers, a beautiful area of mathematics which is beyond the scope
of this booklet.)

That takes care of a meaning for b
1
2 if b > 0. Now have a look at b

1
3 . If rule 2 is to remain

valid then we must have

b
1
3 × b

1
3 × b

1
3 = b

1
3
+ 1

3
+ 1

3 = b1 = b.

As a concrete example take b = 8. Then 8
1
3 must be such that 8

1
3 × 8

1
3 × 8

1
3 = 8. There

is just one number which when multiplied by itself 3 times gives 8. That number is 2.
Thus 8

1
3 = 2. For another example take b = −8. This time we have no trouble giving

a meaning to (−8)
1
3 , even though −8 < 0. There is a number which when multipied by

itself 3 times gives −8, namely −2, so (−8)
1
3 = −2.

In general if we wish we wish to give meaning to expressions like b
1
n in such a way that

rule 3 holds then we must have (b
1
n )n = b1 = b.

If b is positive, b
1
n is defined to be a positive number, the nth root of b. That is, a number

whose nth power is equal to b. This number is sometimes written n
√

b.

If b is negative we need to look at separately at the cases where n is even and where n is
odd.

If n is even and b is negative, b
1
n cannot be defined, because raising any number to an

even power results in a positive number.
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If n is odd and b is negative, b
1
n can be defined. It is a negative number, the nth root of

b. For example, (−27)
1
3 = −3 because (−3) × (−3) × (−3) = −27.

Now we can see how to define b
p
q for any number of the form p

q
, where p and q are integers.

Such numbers are called rational numbers.

Notice that p
q

= p × 1
q
, so if rule 3 is to hold then

b
p
q = (b

1
q )p = (bp)

1
q .

We know how to make sense of (b
1
q )p and (bp)

1
q , and they turn out to be equal, so this

tells us how to make sense of b
p
q . If we want rules 1, 2 and 3 to hold then we must define

b
p
q to be either one of (bp)

1
q or (b

1
q )p.

This definition always makes sense when b is positive, but we must take care when b is
negative. If q is even then we may have trouble in making sense of b

p
q for negative b.

For example we cannot make sense of (−3)
3
2 . This is because we cannot even make sense

of (−3)
1
2 , let alone ((−3)

1
2 )3. Trying to take the exponents in the other order does not

help us because (−3)3 = −27 and we cannot make sense of (−27)
1
2 .

However it may be that the numerator and denominator of p
q

contain common factors
which, when cancelled, leave the denominator odd. For example we can make sense of
(−3)

4
6 , even though 6 is even, because 4

6
= 2

3
, and we can make sense of (−3)

2
3 .

A rational number p
q

is said to be expressed in its lowest form if p and q contain no
common factors. If p

q
, when expressed in its lowest form, has q odd then we can make

sense of b
p
q even for b < 0.

To recapitulate, we define b
p
q = (b

1
q )p = (bp)

1
q . This definition makes sense for all p

q
if

b > 0. If b < 0 then this definition makes sense providing that p
q

is expressed in its lowest
form and q is odd.

So far, if b > 0, we have been able to give a suitable meaning to bx for all rational numbers
x. Not every number is a rational number. For example,

√
2 is an irrational number:

there do not exist integers p and q such that
√

2 = p
q
. However for b > 0 it is possible to

extend the definition of bx to irrational exponents x so that rules 1,2 and 3 remain valid.
Thus if b > 0 then bx is defined for all real numbers x and satisfies rules 1, 2 and 3. We
will not show how bx may be defined for irrational numbers x.

Examples

(1
3
)−1 = 1

( 1
3
)

= 3

(0.2)−3 = 1
(0.2)3

= 1
0.008

= 125

(−64)
2
3 = [(−64)

1
3 ]2 = (−4)2 = 16 or,

(−64)
2
3 = [(−64)2]

1
3 = (4096)

1
3 = 16

16
3
4 = ( 4

√
16)3 = 23 = 8
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(−16)
3
4 is not defined.

5
3
2 = 51+ 1

2 = 5 × 5
1
2 = 5

√
5

Exercises
If the following expressions are not defined then say so. Otherwise evaluate them.

21. 25
3
2 22. (−81)

5
4 23. 81

5
4 24. (−27)

3
2 25. (−27)

2
3

1.3 Exponents with Different Bases

From the definition of exponents we know that if n is a positive integer then

(ab)n = (ab) × (ab) × · · · × (ab)︸ ︷︷ ︸
n factors

= a × a × · · · × a︸ ︷︷ ︸
n factors

× b × b × · · · × b︸ ︷︷ ︸
n factors

(switching the order around)

= anbn.

Just as in section 1.2, we can show that this equation holds true for more general exponents
than integers, and we can formulate the following rule:

Rule 4: (ab)x = axbx whenever both sides of this equation make sense, that is, when
each of (ab)x, ax and bx make sense.

Again, from the definition of exponents we know that if n is a positive integer then(
a

b

)n

=
a

b
× a

b
× · · · × a

b︸ ︷︷ ︸
n factors

(b �= 0)

=

n factors︷ ︸︸ ︷
a × a × · · · × a

b × b × · · · × b︸ ︷︷ ︸
n factors

=
an

bn

As in section 1.2, we can show that this equation remains valid if the integer n is replaced
by a more general exponent x. We can formulate the following rule:

Rule 5: (
a

b
)x =

ax

bx
whenever both sides of this equation make sense, that is, whenever

(a
b
)x, ax and bx make sense.

An expression of the form axby cannot generally be simplified, though it can be written in
the form (ab

y
x )x or (a

x
y b)y if necessary. For example, we cannot really make the expression

a2b5 any simpler than it is, though we could write it in the form (ab
5
2 )2 or (a

2
5 b)5.

Examples

(2 × 3)3 = 23 × 33 = 8 × 27 = 216 = 63
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(4x)
1
2 = 4

1
2 x

1
2 = 2x

1
2 = 2

√
x

(−40)
1
3 = (−8 × 5)

1
3 = (−8)

1
3 × (5)

1
3 = −2 × 3

√
5

(2
3
)3 = 23

33 = 8
27

(4
7
)−2 = 1

( 4
7
)2

= 1 × 72

42 = 49
16

(−27
8
)−

1
3 = (− 8

27
)

1
3 = (−8)

1
3

27
1
3

= −2
3

Exercises
Simplify the following expressions.

26. (x4y)
1
2 27. 6

1
3 × 36

1
3 28. x

(
y3

x4

) 1
4 29. (81

16
)

1
4 30. (a3bx)3

1.4 Scientific Notation

Scientific notation is a way of expressing any number, especially a very large or a very
small number, in a concise and convenient fashion using powers of 10.

For example, consider the numbers 2700000000000000000 and 27000000000000000.

It is plain that they are both quite large numbers. However, written down in this way it
is difficult for us to see just how large these numbers are, or to compare their sizes. It is
clear that if we did want to compare the size of these numbers we would probably begin
by counting the numbers of zeros at the tail of each of these numbers.

The idea behind scientific notation is that any number can be written as a number between
1 and 10 multiplied by a power of 10. For example:

45 = 4.5 × 101

450 = 4.5 × 102

4500 = 4.5 × 103

0.45 = 4.5 × 10−1

0.045 = 4.5 × 10−2

0.0045 = 4.5 × 10−3.

Notice that the power to which 10 is raised (the exponent) indicates where to shift the
the decimal point. Thus in the expression

4500 = 4.5000 × 103

the exponent is positive and decimal point has been shifted to the right by 3 places.
Similarly, in

0.045 = 4.5 × 10−2

the exponent is negative and the decimal point has been shifted to the left by 2 places.

To return to the examples given in the beginning of this section, the first number can be
written as 2.7 × 1018 and the second as 2.7 × 1016. Not only is it easier and quicker to
write these numbers in scientific notation, but written in this fashion it is clear that the
second number is smaller than the first by a factor of 102 = 100.
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Remember that in scientific notation it is conventional that the expression is written as
a number between 1 and 10 multiplied by a power of 10. For example we would write
3.7 × 108 rather than 37 × 107 or .37 × 109.

Examples

967 = 9.67 × 102

.0000439 = 4.39 × 10−5

8.26 × 1013 = 82600000000000

(1.2 × 104) × (3.7 × 102) = 1.2 × 3.7 × 104+2 = 4.44 × 106

(3.47 × 10−7) × (2.3 × 1023) = 3.47 × 2.3 × 10−7+23 = 7.981 × 10−7+23 = 7.981 × 1016

(1.3 × 10−2) + (7.35 × 10−3) = .013 + .00735 = .02035 = 2.035 × 10−2

4.28×1028

2.91×1011 = 4.28
2.91

× 1028

1011 ≈ 1.4708 × 1028−11 = 1.4708 × 1017

3.77×10−8

1.15×10−4 = 3.77
1.15

× 10−8

10−4 ≈ 3.278 × 10−8−(−4) = 3.278 × 10−4

Exercises
Write the following numbers in scientific notation.

31. 0.00419 32. 3.1 × 102 × 4.2 × 10−8 33. 2.7 × 102 + 4.3 × 10−1

34. 8327 35. 2.1 × 102 × 8.7 × 10−3

1.5 Summary

If b > 0 then bx is defined for all numbers x. If b < 0 then bx is defined for all integers and
all numbers of the form p

q
where p and q are integers, p

q
is expressed in its lowest form and

q is odd. The number b is called the base and x is called the power, index or exponent.
Exponents have the following properties:

1. If n is a positive integer and b is any real number then bn = b × b × · · · × b︸ ︷︷ ︸
n factors

.

2. b
1
n =

n
√

b, and if n is even we take this to mean the positive nth root of b.

3. If b �= 0 then b0 = 1. b0 is undefined for b = 0.

4. If p and q are integers then b
p
q = (b

1
q )p = (bp)

1
q .

5. bx × by = bx+y whenever both sides of this equation are defined.

6.
bx

by
= bx−y whenever both sides of this equation are defined.

7. b−x =
1

bx
whenever both sides of this equation are defined.

8. (ab)x = axbx whenever both sides of this equation are defined.

9. (
a

b
)x =

ax

bx
whenever both sides of this equation are defined.

Any real number can be written in the form a × 10n where a is a number between 0 and
10 and n is an (positive or negative) integer. This is called scientific notation.
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1.6 Exercises

The following expressions evaluate to quite a ‘simple’ number. If you leave some of your
answers in fractional form you won’t need a calculator.

36. 9
1
2 37. 16

3
4 38. (1

5
)−1 39. (3−1)2 40. (5

2
)−2

41. (−8)
3
2 42. (−27

8
)

2
3 43. 5275−24 44. 8

1
2 2

1
2 45. (−125)

2
3

These look a little complicated but are equivalent to simpler ones. ‘Simplify’ them. Again,
you won’t need a calculator.

46.
3n+2

3n−2
47.

√
16

x6
48. (a

1
2 + b

1
2 )2

49. (x2 + y2)
1
2 − x2(x2 + y2)−

1
2 50.

x
1
2 + x

x
1
2

51. (u
1
3 − v

1
3 )(u

2
3 + (uv)

1
3 + v

2
3 )

Write these numbers in scientific notation.

52. 0.00317 53. 2.15 × 107 × 3.54 × 10−1 54. 3.47 × 1017 × 7.4 × 10−3

55. (2.7 × 1065)
1
3 56. 5.98 × 106 − 3.7 × 105 57.

3.8 × 1027

2.45 × 10−8

Don’t bother working these ones out, just decide whether or not the expressions are
defined.

58. (−1.7)
1
8 59. (−3)

2
19 60. (−4.8)−

6
14 61. (π)

√
2 62. (−π)−

8
14
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2 Exponential Functions

2.1 The Functions y = 2x and y = 2−x

In the previous section we saw how, if b is a positive number, we can make sense of the
expression bx for all real numbers x. It turns out that functions of the type y = f(x) = bx,
where b is a positive number, are of great importance in mathematics and in all branches
of the sciences.

To get an indication of how these functions behave we have graphed the function f(x) = 2x

in Figure 1. You should be aware of several important features of this graph.

Figure 1: Graph of the function f(x) = 2x

The function f(x) = 2x is always positive (the graph of the function never cuts the x-
axis), although the value of the function gets very close to zero for values of x very large
negative (ie a long way to the left along the x-axis). For example, when x = −5 we have
2x = 0.03125.

The function 2x increases very rapidly for large values of x. From the rules of exponents
discussed in section 1 you should know that 2x+1 = 2 × 2x. In words, the value of 2x

doubles if x is increased by 1.

The graph of y = 2x intercepts the y-axis at y = 1. You should expect this because you
know from the rules of exponents that 20 = 1.

Figure 2 displays the graph of the function f(x) = 2−x. How is the graph of y = 2−x

related to the graph of y = 2x? Well, if we set x = 1 then 2−x = 2−1 = 1
2
, which is the

value which would have been obtained by setting x = −1 in the function y = 2x. In the
same way we see that if we set x = −7 in the function y = 2−x then we obtain the same
value as we would by setting x = 7 in the function y = 2x. Proceeding like this we see
that the graph of the function y = 2−x is the reflection in the y-axis of the graph of y = 2x.
Compare Figure 1 with Figure 2.

From the rules of exponents discussed in section 1 it follows that 2−x = (2−1)x = (1
2
)x.

The function y = 2−x is the same as the function y = (1
2
)x, and so

2−(x+1) = (
1

2
)x+1 =

1

2
× (

1

2
)x = (

1

2
) × 2−x.
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Figure 2: Graph of the function y = 2−x

In words, the value of the function y = 2−x is decreased by a factor of 1
2

if x is increased
by 1.

2.2 The functions y = bx and y = b−x

Any function of the form y = bx where b > 0 and b �= 1 behaves like one of the functions
y = 2x or y = (1

2
)x = 2−x.

If b > 1 then the function y = bx is increasing and behaves like y = 2x.

If b < 1 then the function is decreasing and behaves like y = (1
2
)x = 2−x.

If b = 1 then y = 1x = 1 for all x. Notice that regardless of the value of b, providing
always that b > 0, the function y = bx intercepts the y-axis at y = 1. This is because
b0 = 1 for all numbers b. Figure 3 shows the graphs of the functions y = bx for various
values of b.

Figure 3: Graphs of y = bx for various values of b.
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Exercises
1. Make a careful sketch of the graphs of the functions y = 2.5x and y = 5−x. Indicate
where (if at all) these functions intercept the axes.

2. Which of the following functions are increasing and which are decreasing? You should
be able to decide without graphing the functions or substituting any values, though you
may do so if you wish.

a. f(x) = 2.7x b. f(x) = ( 1
2.7

)−x c. f(x) = 3−x d. f(x) = 0.22x

2.3 The Functions y = ex and y = e−x

There is a number called e which has a special importance in mathematics. Like the
number π, the number e is an irrational number (see section 1.2), which is equivalent
to saying that it has a non-terminating, non-repeating decimal representation. In other
words we can never write down exactly what e is. To 5 decimal places it is equal to
2.71828, but this is just an approximation of the correct value. Unless you really need to
write down an approximate value for e it is more convenient and accurate to leave the
symbol e in expressions involving this number. For example, it is preferable to write 2e
rather than 2 × 2.71828 or 5.43656.

In mathematics the functions ex and e−x are particularly important. Because of this we
have graphed them in figure 4. You can see how similar these functions are to the other
exponential functions. The reasons for their importance are discussed briefly in section
5.5.

The function y = ex is often referred to as the exponential function, and is even given
another special symbol, exp, so that exp(x) = ex and exp(−x) = e−x.

Figure 4: Graphs of ex and e−x.
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2.4 Summary

Functions of the form f(x) = bx, where b > 0 and b �= 1 are called exponential functions.

If b < 1 then bx is a decreasing function, and if b > 1 then bx is an increasing function.

The function b−x is equal to the function (1
b
)x.

The number e ≈ 2.71828 and the functions ex and e−x are of special importance in
mathematics. The function ex is often given the special name exp, so that exp(x) = ex

and exp(−x) = e−x.

2.5 Exercises

3. Which of the following functions are increasing and which are decreasing? If you have
understood this section fully you will be able to answer this question without graphing
the functions or substituting any values.

a. f(x) = (5
3
)x b. f(x) = (5

3
)−x c. f(x) = (3

5
)−x d. f(x) = (3

5
)x

4. Sketch the graphs of the functions f(x) = 3x and f(x) = 3−x. On the same diagrams
mark in roughly the graphs of f(x) = 2.9x and 2.9−x.

5. It is true that e1.09861 ≈ 3. Try it for yourself on a calculator if you have one. How
do you think the functions y = 3x and y = e1.09861x compare? Why? If you cannot solve
this otherwise, you might like to try substituting in a few numbers for x in both of the
functions and comparing the values.
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3 Logarithms

3.1 Introduction

Taking logarithms is the reverse of taking exponents, so you must have a good grasp on
exponents before you can hope to understand logarithms properly. Review the material
in the first two sections of this booklet if necessary.

We begin the study of logarithms with a look at logarithms to base 10. It is important
that you realise from the beginning that, as far as logarithms are concerned, there is
nothing special about the number 10. Indeed, the most natural logarithms are logarithms
to base e, and they are introduced in section 3.4. Logarithms to base 10 are in common
use only because we use a decimal system of counting, and this is probably a result of the
fact that humans have ten fingers. We have begun with logarithms to base 10 only to be
definite, and we could just as easily have started with logarithms to any other convenient
base.

3.2 Logarithms to Base 10 (Common Logarithms)

We will begin by considering the function y = 10x, graphed in Figure 5. As we know

Figure 5: Graph of f(x) = 10x

from the discussion in section 1, given any number x, we can raise 10 to the power of x to
obtain another number which we write as 10x. What of the reverse procedure? Suppose
we begin with a number and we wish to find the power to which 10 must be raised to
obtain that number.

For example, suppose we begin with the number 7 and we wish to find the power to which
10 must be raised to obtain 7. This number is called the logarithm to the base 10 of 7
and is written log10 7. Similarly, log10 15 is equal to the power to which 10 must be raised
to obtain 15.

For a general number x, log10 x is equal to that power to which 10 must be raised to obtain
the number x.
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When we see an expresion like log10 29 we can think of it as a sort of a question. The
question we have in mind is this: to what power must we raise 10 to get 29? Or, 10? = 29.
The answer to this question is a number, and we call that number log10 29.

The definition of the logarithm to base 10 is the basis on which the remainder of this
section rests, and it is extremely important that you understand it properly.

Again: log10 x is equal to that power to which 10 must be raised to obtain the number x.

As an example, let’s calculate log10 103. According to the definition, log10 103 is equal to
that power to which 10 must be raised to obtain 103. To what power must we raise 10 to
obtain 103? Or, 10? = 103. Surely the answer is 3. Notice that 103 = 1000, so we have
worked out log10 1000, and without using a calculator! We have been able to work this
out because we have understood the meaning of the logarithm of a number. We will need
to use a calculator to work out the logarithms of most numbers, but it is very important
that we understand what it is that the calculator is working out for us when we push the
buttons.

Without a calculator we can work out the logarithms of many numbers.

Examples:

log10 100 = log10 102 = 2

log10 0.1 = log10 10−1 = −1

log10 10
√

10 = log10 101.5 = 1.5

Exercise
1. By expressing these numbers as powers of 10, and without using a calculator, calculate
the logarithms to base 10 of the following numbers.

a. 10000 b. 1
100

c. 0.001 d. 1012.3

e.
√

10 f. 10 4
√

10 g. ( 1
1000

) 3
√

10 h. 1
0.001

Can we take the logarithm of any number? In other words, given any number x can we
find a power to which 10 may be raised to obtain the number x?

Look at the graph of y = 10x in Figure 5. We see that 10x is never negative and indeed
never even takes the value 0. There is no power to which we may raise 10 to obtain a
number less than or equal to 0. This means that we cannot take the logarithm of a number
less than or equal to zero. We say that log10 x is undefined for x ≤ 0.

The graph of 10x gives us another important piece of information. If x > 0 then there is
only one power to which we may raise 10 to get x. Our definition of log10 x is unambiguous.

The graph of y = log10 x is shown in Figure 6. You should pay attention to several
important features of this graph.

The graph intercepts the x-axis at x = 1. In other words, log10 1 = 0. You should expect
this because you should know from section 1 that 100 = 1.
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Figure 6: Graph of f(x) = log10 x

The graph does not extend to the left of the y-axis, and in fact never even intercepts the
y-axis. We have already commented on the fact that the logarithm of a number less than
or equal to zero is not defined.

The function y = log10 x gets as large as we like as x gets large. By this we mean that
we can make log10 x as large as we choose by choosing x to be sufficiently large. The
graph does not stay below a certain height as x gets large (it does not have a horizontal
asymptote). However the function y = log10 x increases very slowly as x increases.

The fact that we bother to specify the base as being 10 suggests that we can take loga-
rithms to other bases. We can, and we shall say more about this later, but for now let us
stick with base 10.

You should be aware that many writers may not mention the base of the logarithms they
are referring to if it is obvious from the context what that base is, or if it does not matter
which base is used. They may just write ‘the logarithm of x’ or log x.

Because logarithms to base 10 have been used so often they are called common logarithms.
If you have a calculator it probably has a Log button on it. You could use it to find, for
example, log10 7 and log10 0.01.

From the examples above you should be able to see that if we express a number as a power
of 10 then we can read off the logarithm to base 10 of that number from the power. Let’s
try to make this precise. Suppose that x is any real number. What is log10 10x? Well,
log10 10x is that power to which 10 must be raised to obtain the number 10x. To what
power must we raise 10 to obtain the number 10x? Or, to put this question another way,
10? = 10x. The answer must be x. Thus log10 10x = x. This is our first rule of logarithms.

Rule A: For any real number x, log10 10x = x.
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Examples

log10 103.7 = 3.7

log10 0.0001 = log10 10−4 = −4

log10 104 5
√

103 = log10 104 × (103)
1
5 = log10 104+ 3

5 =
23

5

Rule A tells us what happens if we first raise 10 to the power x and then take the logarithm
to base 10 of the result. We end up with what we started with. What happens if we do
things in the reverse order? Consider the number log10 7. If you have a calculator with
a Log button on it you can see that this number is approximately 0.8451. Now suppose
we raise 10 to the power log10 7. What do you think the result is? In symbols, what is
10log10 7? Well, remember that log10 7 is equal to that power to which 10 must be raised
to give the number 7. So if we raise 10 to that power then we must get 7. The same
reasoning applies to show that if x > 0 then 10log10 x = x. The number log10 x is that
power to which 10 must be raised to obtain x. So if we raise 10 to this power we must
get x. We will write this down as the second of our rules of logarithms.

Rule B: For any real number x > 0, 10log10 x = x.

Examples

10log10 π = π

10log10(x2+y2) = x2 + y2

10log10 103x3

= 103x3

Exercises
2. Simplify the following expressions.

a. 10log10 37.23 b. log10 10x2y c. 10log10(10x) d. log10

√
10

x
2y

e. 1010log10 x
f. log10 10

x+y
z g. 10log10( 3xy

z
) h. log10 10102x

Rules A and B express the fact that the functions y = 10x and y = log10 x are inverse
functions of one another. If you have not come across the concept of inverse functions
before then do not worry about what this means. If you have, then you will probably
remember that the graph of an inverse function is obtained by reflecting the graph of
the original function in the line y = x, that is the line which runs in the north-east and
south-west direction. Take another look at Figures 5 and 6.

We can use the rules of exponents discussed in section 1 to work out more rules for
logarithms.

If x and y are numbers greater than zero then, by rule B, x = 10log10 x and y = 10log10 y,
so

xy = 10log10 x × 10log10 y

= 10log10 x+log10 y (by the rules for exponents).
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This equation tell us that if we raise 10 to the power log10 x+log10 y then we get the number
xy. In other words it tells us that log10 x+ log10 y is the answer to the question 10? = xy.
But the answer to this question is also log10 xy. Thus log10 xy = log10 x + log10 y. This
we will call our third rule of logarithms.

Rule C: For any real numbers x > 0 and y > 0, log10 xy = log10 x + log10 y.

So much for multiplication. What of division? If x > 0 and y > 0 then

x

y
=

10log10 x

10log10 y
(by rule B)

= 10log10 x−log10 y (by the rules for exponents).

This equation tells us that if we raise 10 to the power log10 x − log10 y then we get the
number x

y
. In other words, log10

x
y

= log10 x−log10 y. This is our fourth rule of logarithms.

Rule D: For any real numbers x > 0 and y > 0, log10(
x
y
) = log10 x − log10 y.

If x is a number, x > 0, and n is any number at all then:

xn = (10log10 x)n (by rule B)

= 10n×log10 x (by the rules for exponents).

This equation tells us that if we raise 10 to the power n log10 x then we get the number

xn. In other words, log10 xn = n log10 x. This is our fifth rule of logarithms.

Rule E: For real numbers x and n, with x > 0, log10 xn = n log10 x

Examples

log10

xy

z
= log10 x + log10 y − log10 z

log10 x3y−2 = 3 log10 x − 2 log10 y

2 log10 y − 4 log10(x
2 − z3) = log10

y2

(x2 − z3)4

Exercises
3. Rewrite the following expressions so that they involve just one logarithm.

a. log10 x3 − 2.5 log10 y b. log10 6 + log10 x−2

c. 5 log10 3x − 4 log10(xy + z2) d. 2 log10 xy + 3 log10(z
2 − y2)

e. log10(x + y) − 3 log10 4 f. log10 xy − 1.7 log10 y2
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3.3 Logarithms to Base b

As we mentioned above, we can take logarithms to other bases. If b is a real number,
b > 1, and if x is a real number, x > 0, then we define the logarithm to base b of x to be
that power to which b must be raised to obtain the number x.

You may also think of logb x as the answer to the question b? = x. You should notice that
if b = 10 then this definition agrees with the one given earlier for log10 x.

Again: the logarithm to base b of a number x > 0 (written logb x) is that power to which
b must be raised to obtain the number x.

Examples:

log5 125 = log5 53 = 3

log16 2 = log16 16
1
4 =

1

4

log7

1

49
= log7 7−2 = −2

Figure 7: Graph of f(x) = logb x for various values of b.

We have required the base of our logarithms, b, to be greater than 1. In fact we can take
logarithms to any base b provided b > 0 and b �= 1. It is more usual though to use b > 1,
and in this booklet we will always use a base b > 1.

Figure 7 shows graphs of the functions y = logb x for various values of b. As you can see
from these graphs, the logarithm functions behave in a similar fashion for different bases
b, providing b > 1.

All of what we said earlier remains true for logb x if 10 is replaced by b. In particular the
five rules of logarithms remain true. Let us restate these to be applicable to logb x.
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For a real number b > 1:

Rule 1: For any real number x, logb bx = x

Rule 2: For any real number x > 0, blogb x = x

Rule 3: For any real numbers x > 0 and y > 0, logb xy = logb x + logb y

Rule 4: For any real numbers x > 0 and y > 0, logb
x
y

= logb x − logb y

Rule 5: For real numbers x and n, with x > 0, logb xn = n logb x

Exercises
4. Simplify these expressions.

a. log2 2x2x+y b. 5log5
x+y

3 c. log7 49uv d. 3log9
u
3w

5. Rewrite the following expressions so that they involve only one logarithm.

a. 2 log3(x + y) − 3 log3(xy) + log3 x2 b. log6 xy − 4 log6(x + y)

c. 4 log17 xy2 + log17(x
2 + y2) − 2.5 log17 x

Now that we have shown how to define logarithms to any base b > 1, let us see how these
logarithms are related to each other. We will consider logarithms to two bases a > 1 and
b > 1. By rule 2,

x = aloga x.

Taking logarithms to base b of both sides of this equation yields

logb x = logb(a
loga x)

= loga x × logb a (by rule 5).

This, our sixth rule of logarithms, tells us how logarithms to different bases are related.

Rule 6: For numbers x > 0, a > 1 and b > 1, logb x = logb a × loga x.

From this rule we see that logb a × loga b = logb b = 1, and so

logb a =
1

loga b
.

This fact enables us to calculate the logarithm of a number to any base from a calculator
which calculates logarithms to one base only.

Example: If your calculator only has logarithms to base 10 on it, how can you find
log7 9?

Solution: By rule 6,

log7 9 = log7 10 × log10 9

=
1

log10 7
× log10 9

and the last expression can be evaluated by any calculator which can evaluate logarithms
to base 10.

Exercises
6. Using a calculator, find the following logarithms.

a. log3 17 b. log5 2 c. log22 14 d. log4 8
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3.4 Logarithms to Base e (Natural Logarithms)

Logarithms to the base 10 are commonly used, because we use a decimal number system
and not a base 8 system, or a base 2 system. If humans were born with 3 toes (or if sloths
could count) then logarithms to base 3 might be in common use. Apart from the fact that
we use a decimal number system, there is no reason for us to prefer logarithms to base 10
over logarithms to any other base. Indeed, we mentioned in section 2 that the function
y = ex is a very important function in mathematics, and it is therefore reasonable to
expect that logarithms to base e will also assume special importance.

They do, and are given the name ‘Natural Logarithms’ or ‘Napierian Logarithms’. They
are even given a special symbol, ln, so that lnx = loge x. One of the graphs in Figure 7
is a plot of the function y = loge x = ln x. Notice that the function y = ln x behaves in a
similar fashion to the function y = log10 x. This comes as no surprise to us since we have
already seen in section 2 that the functions ex and 10x are very similar to each other.

3.5 Exponential Functions Revisited

In section 2 we saw how much the exponential functions resemble each other. If b > 1 then
the exponential function bx looks very much like any of the other exponential functions
with base greater than 1, and if b < 1 then bx looks a lot like any of the exponential
functions with base less than one. We will now be able to see more clearly what is going
on here.

Consider the function y = 2x. Now 2 = eloge 2, so we can write

2x = (eloge 2)x = ex loge 2.

We have been able to write the function 2x as a function involving the base e, though the
exponent is now not simply x, but x multiplied by some fixed number, namely loge 2.

Similarly, we could write

5x = ex loge 5

19−x = e−x loge 19

7−x = 4−x log4 7

ex = 13x log13 e

We can write all exponential functions in the form y = ekx, where k is some constant
which may be negative.

Exercises
7. Write each of the following functions in the form y = ekx for a suitable constant k.

a. y = 10x b. y = 7.5−x c. y = 4−x d. y = (1
4
)x
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3.6 Summary

For any real number b > 1 and any x > 0, logb x is equal to that number to which b must
be raised to obtain the number x. One can think of logb x as the answer to the question
b? = x. The number logb x is called the logarithm to base b of x.

The function logb x satisfies the following rules:

Rule 1: For any real number x, logb bx = x

Rule 2: For any real number x > 0, blogb x = x

Rule 3: For any real numbers x > 0 and y > 0, logb xy = logb x + logb y

Rule 4: For any real numbers x > 0 and y > 0, logb
x
y

= logb x − logb y

Rule 5: For real numbers x and n, with x > 0, logb xn = n logb x

Rule 6: For numbers x > 0, a > 1 and b > 1, logb x = logb a × loga x.

Logarithms to base 10 are in common use and for this reason they are called Common
Logarithms.

Logarithms to base e are of special importance. They are often called natural logarithms
or Napierian logarithms, and the symbol lnx is often used for them. Thus ln x = loge x.

Any exponential function may be written in the form ekx, where the constant k may be
negative.

3.7 Exercises

Without using a calculator, find the following numbers.

8. log10 10−19 9. loge e 5
√

e 10. log2 16

11. log17
173√
17

12. ln e2

e21 13. ln e7

log11 121

14. 5log5 32.7 15. eln 9
2 16. eln 3√27

Rewrite the following expressions using the rules of logarithms, and simplify where pos-
sible.

17. log10
100x2

9y
18. ln xy−3

e1.37 19. log4
4−1.3z7

x2y3

20. log3
x3y2

27z
1
2

21. ln(e−2.4x6) 22. log5
125x3

0.2y2

Using the rules of logarithms, rewrite the following expressions so that just one logarithm
appears in each.

23. 3 log2 x + log2 30 + log2 y − log2 w 24. 2 ln x − ln y + a ln w

25. 12(ln x + ln y) 26. log3 e × ln 81 + log3 5 × log5 w

27. log7 10 × log10 x2 − log7 49x 28. log10 0.1 × log6 x − 2 log6 y + log6 4 × log4 e

Given that loge 5 ≈ 1.6094, and loge 7 ≈ 1.9459, find the following numbers without using
a calculator except to perform multiplication or division.

29. log5 e 30. log5 7 31. log5 72 32. log49 5 33. log49 25 34. loge 25
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4 Solutions to Exercises

4.1 Solutions to Exercises from Section 1

1. 34 = 3 × 3 × 3 × 3 = 81

2. 42 × 33 = 4 × 4 × 3 × 3 × 3 = 16 × 27 = 432

3. 1.57

1.54 = 1.57−4 = 3.375

4. (2.72)3 = 2.72×3 = 387.420489

5. (3 + 2.23)4 = 13.6484 = 34695.732

6. 22x+y

2x = 22x+y−x = 2x+y = 2x2y

7. x7x9.5

x1.2 = x7+9.5−1.2 = x15.3

8. 4x+3y = 4x43y

9. (3x)z = 3xz

10. 3x+2z

3
z
4

= 3x+2z− z
4 = 3x+ 7z

4

11. 5−1 = 1
5

12. 32

2−3 = 9
1
8

= 72

13. 56−9 = 5−3 = 1
53 = 1

125

14. 2.24−2×3 = 2.2−2 = 1
2.22 ≈ .2066116

15. (6−2)2 = 6−2×2 = 1
64 = .0007716049382716

16.

(x
1
2 + y

1
2 )(x

1
2 − y

1
2 ) = x

1
2 x

1
2 − x

1
2 y

1
2 + y

1
2 x

1
2 − y

1
2 y

1
2

= x − y

17.

(x
1
4 − y

1
4 )(x

3
4 + x

1
2 y

1
4 + x

1
4 y

1
2 + y

3
4 ) = x

1
4 x

3
4 + x

1
4 x

1
2 y

1
4 + x

1
4 x

1
4 y

1
2 + x

1
4 y

3
4

− y
1
4 x

3
4 − y

1
4 x

1
2 y

1
4 − y

1
4 x

1
4 y

1
2 − y

1
4 y

3
4

= x + x
3
4 y

1
4 + x

1
2 y

1
2 + x

1
4 y

3
4

− x
3
4 y

1
4 − x

1
2 y

1
2 − x

1
4 y

3
4 − y

= x − y

18.

x
3
2 + y

1
2 x

x
1
2 + y

1
2

=
x(x

1
2 + y

1
2 )

x
1
2 + y

1
2

= x
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19. ⎛
⎝ x

1
2 (x − y)

(x
1
2 − y

1
2 )(x

1
2 + y

1
2 )

⎞
⎠2

=

⎛
⎝ x

1
2 (x − y)

x
1
2 x

1
2 + x

1
2 y

1
2 − x

1
2 y

1
2 − y

1
2 y

1
2

⎞
⎠2

=

⎛
⎝x

1
2 (x − y)

x − y

⎞
⎠2

=
(
x

1
2

)2

= x

20. (x
1
2 )2 = x

1
2
×2 = x

21. 25
3
2 = (25

1
2 )3 = 53 = 125

22. (−81)
5
4 is not defined.

23. 81
5
4 = (81

1
4 )5 = 35 = 243

24. (−27)
3
2 is not defined.

25. (−27)
2
3 = ((−27)

1
3 )2 = (−3)2 = 9

26. (x4y)
1
2 = x4× 1

2 y
1
2 = x2y

1
2

27. 6
1
3 × 36

1
3 = (6 × 36)

1
3 = 6

28. x
(

y3

x4

) 1
4 = xy

3
4 x−1 = y

3
4

29. (81
16

)
1
4 = 81

1
4

16
1
4

= 3
2

30. (a3bx)3 = a3×3b3×x = a9b3x

31. 0.00419 = 4.19 × 10−3

32. 3.1 × 102 × 4.2 × 10−8 = 3.1 × 4.2 × 102−8 = 13.02 × 10−6 = 1.302 × 10−5

33. 2.7 × 102 + 4.3 × 10−1 = 270 + 0.43 = 270.43 = 2.7043 × 102

34. 8327 = 8.327 × 103

35. 2.1 × 102 × 8.7 × 10−3 = 2.1 × 8.7 × 102−3 = 18.27 × 10−1 = 1.827

36. 9
1
2 =

√
9 = 3

37. 16
3
4 = (16

1
4 )3 = 23 = 8

38. (1
5
)−1 = 1

1
5

= 5

39. (3−1)2 = 3−2 = 1
32 = 1

9

40. (5
2
)−2 = (2

5
)2 = 4

25
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41. (−8)
3
2 is not defined.

42. (−27
8

)
2
3 = ((−27

8
)

1
3 )2 = (−3

2
)2 = 9

4

43. 5275−24 = 527−24 = 53 = 125

44. 8
1
2 2

1
2 = (8 × 2)

1
2 = 16

1
2 = 4

45. (−125)
2
3 = ((−125)

1
3 )2 = (−5)2 = 25

46. 3n+2

3n−2 = 3n+2−(n−2) = 34 = 81

47.
√

( 16
x6 ) = ( 16

x6 )
1
2 = 16

1
2

x6× 1
2

= 4
x3

48. (a
1
2 + b

1
2 )2 = (a

1
2 )2 + 2a

1
2 b

1
2 + (b

1
2 )2 = a + 2a

1
2 b

1
2 + b

49.

(x2 + y2)
1
2 − x2(x2 + y2)−

1
2 = (x2 + y2)

1
2 − x2

(x2 + y2)
1
2

=
(x2 + y2)

1
2 (x2 + y2)

1
2 − x2

(x2 + y2)
1
2

=
x2 + y2 − x2

(x2 + y2)
1
2

=
y2

(x2 + y2)
1
2

50. x
1
2 +x

x
1
2

= x
1
2

x
1
2

+ x

x
1
2

= 1 + x
1
2

51.

(u
1
3 − v

1
3 )(u

2
3 + (uv)

1
3 + v

2
3 ) = u

1
3 u

2
3 + u

1
3 (uv)

1
3 + u

1
3 v

2
3 − v

1
3 u

2
3 − v

1
3 (uv)

1
3 − v

1
3 v

2
3

= u − v

52. 0.00317 = 3.17 × 10−3

53. 2.15 × 107 × 3.54 × 10−1 = 2.15 × 3.54 × 107−1 = 7.611 × 106

54. 3.47 × 1017 × 7.4 × 10−3 = 3.47 × 7.4 × 1017−3 = 25.678 × 1014 = 2.5687 × 1015

55. (2.7 × 1065)
1
3 = (0.27 × 1066)

1
3 = (0.27)

1
3 × (1066)

1
3 ≈ 0.646 × 1066× 1

3 = 6.46 × 1022

56. 5.98 × 106 − 3.7 × 105 = 5980000 − 370000 = 5610000 = 5.61 × 106

57. (3.8×1027)
(2.45×10−8)

= 3.8
2.45

× 1027−(−8) = 1.55 × 1035

58. (−1.7)
1
8 is undefined.

59. (−3)
2
19 is defined.

60. (−4.8)−
6
14 = (−4.8)−

3
7 is defined.

61. (π)
√

2 is defined

62. (−π)−
8
14 = (−π)−

4
7 is defined.
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4.2 Solutions to Exercises from Section 2

1. The graphs of y = 2.5x and y = 5−x appear below. In both cases the graph intercepts
the y-axis at y = 1. In neither case does the graph intercept the x-axis, though the
graph does get extremely close to the x-axis in both cases.

Figure 8: Graph of y = 2.5x.

Figure 9: Graph of y = 5−x.

2. Remember that the function f(x) = bx is increasing if b > 1 and is decreasing if b < 1.

a. f(x) = 2.7x is increasing since 2.7 > 1.

b. f(x) = ( 1
2.7

)−x = 2.7x, so this function is also increasing.

c. f(x) = 3−x = (1
3
)x is decreasing since 1

3
< 1.

d. f(x) = 0.22x is decreasing since 0.22 < 1.



y

y   = 3x

y  = 2.9x

1 2 3 4

10

20

30

40

- 1- 2- 3- 4

x

y

1 2 3 4- 1- 2- 3- 4

10

20

30

40

y  = 2.9 -x

y  = 3-x

x
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3. Again, remember that the function f(x) = bx is increasing if b > 1 and is decreasing
if b < 1.

a. f(x) = (5
3
)x is increasing because 5

3
> 1.

b. f(x) = (5
3
)−x = (3

5
)x is decreasing because 3

5
< 1.

c. f(x) = (3
5
)−x = (5

3
)x is increasing because 5

3
> 1.

d. f(x) = (3
5
)x is decreasing because 3

5
< 1.

4. The graphs are drawn in Figures 21 and 22 below. Notice that the graph of f(x) =
2.9x is very close to the graph of f(x) = 3x, and similarly for the other pair of graphs.

Figure 10: Graphs of y = 3x and y = 2.9x.

Figure 11: Graphs of y = 3−x and y = 2.9−x.

5. On my calculator I get e1.09861 = 2.999993. Now

e1.09861x = (e1.09861)x

≈ 3x

Thus the functions 3x and e1.09861x agree very closely with each other.



Mathematics Learning Centre, University of Sydney 29

4.3 Solutions to Exercises from Section 3.

1. a. log10 10000 = log10 104 = 4

b. log10
1

100
= log10 10−2 = −2

c. log10 0.001 = log10 10−3 = −3

d. log10 1012.3 = 12.3

e. log10

√
10 = log10 10

1
2 = 1

2

f. log10 10 4
√

10 = log10 10 × 10
1
4 = log10 101+ 1

4 = 5
4

g. log10(
1

1000
) 3
√

10 = log10 10−3+ 1
3 = −8

3

h. log10
1

0.001
= log10 103 = 3

2. a. 10log10 37.23 = 37.23 by rule B.

b. log10 10x2y = x2y by Rule A.

c. 10log10(10x) = 10x, since log10(10x) = x by rule A.

d. log10

√
10

x
2y = log10(10

1
2 )

x
2y = log10 10

1
2
× x

2y = x
4y

by rule A.

e. 1010log10 x
= 10x, since 10log10 x = x by rule B.

f. log10 10
x+y

z = x+y
z

by rule A.

g. 10log10
3xy

z = 3xy
z

by rule B.

h. log10 10102x
= 102x by rule A.

3. a. log10 x3 − 2.5 log10 y = log10 x3 − log10 y2.5 = log10
x3

y2.5

b. log10 6 + log10 x−2 = log10 6x−2

c. 5 log10 3x − 4 log10(xy + z2) = log10(3x)5 − log10(xy + z2)4 = log10
(3x)5

(xy+z2)4

d. 2 log10 xy + 3 log10(z
2 − y2) = log10(xy)2 + log10(z

2 − y2)3 = log10(xy)2(z2 − y2)3

e. log10(x + y) − 3 log10 4 = log10(x + y) − log10 43 = log10
x+y
64

f. log10 xy − 1.7 log10 y2 = log10 xy − log10(y
2)1.7 = log10

xy
y3.4 = log10 xy−2.4

4. a. log2 2x2x+y = log2 2x+x+y = 2x + y

b. 5log5
x+y

3 = x+y
3

c. log7 49uv = log7(7
2)uv = log7 72uv = 2uv

d. 3log9
u
3w = (9

1
2 )log9

u
3w = 9

1
2
×log9

u
3w = 9log9( u

3w
)
1
2 = ( u

3w
)

1
2

5. a.

2 log3(x + y) − 3 log3(xy) + log3 x2 = log3(x + y)2 − log3(xy)3 + log3 x2

= log3

((x + y)2x2)

(xy)3

b.

log6 xy − 4 log6(x + y) = log6 xy − log6(x + y)4

= log6

xy

(x + y)4
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c.

4 log17 xy2 + log17(x
2 + y2) − 2.5 log17 x = log17(xy2)4 + log17(x

2 + y2) − log17 x2.5

= log17

x4y8(x2 + y2)

x2.5

6. a. log3 17 = log3 10 × log10 17 = log10 17
log10 3

≈ 1.2304
0.4771

≈ 2.5789

b. log5 2 = log5 10 × log10 2 = log10 2
log10 5

≈ 0.3010
0.6990

≈ 0.4306

c. log22 14 = log22 10 × log10 14 = log10 14
log10 22

≈ 1.1461
1.3424

≈ 0.8538

d. log4 8 = log4 10×log10 8 = log10 8
log10 4

≈ 0.9031
0.6021

≈ 1.5 (in fact log4 8 is exactly 1.5 because

8 = 4
3
2 )

7. a. y = 10x = (eln 10)x = e(ln 10)x

b. 7.5−x = (eloge 7.5)−x = e−(loge 7.5)x

c. 4−x = (eloge 4)−x = e−(loge 4)x

d. (1
4
)x = (eloge

1
4 )x = e−(loge 4)x

8. log10 10−19 = −19

9. loge e 5
√

e = loge e
6
5 = 6

5

10. log2 16 = log2 24 = 4

11. log17
173√
17

= log17 173− 1
2 = 5

2

12. ln e2

e21 = ln e2−21 = −19

13. ln e7

log11 121
= 7

log11 112 = 7
2

14. 5log5 32.7 = 32.7

15. eln 9
2 = 9

2

16. eln 3√27 = 3
√

27 = 3

17. log10
100x2

9y
= log10 100 + log10 x2 − log10 9y = 2 + 2 log10 x − log10 9 − log10 y

18. ln(xy−3

e1.37 ) = ln x − 3 ln y − ln e1.37 = ln x − 3 ln y − 1.37

19. log4(
4−1.3z7

x2y3 ) = −1.3 + 7 log4 z − 2 log4 x − 3 log4 y

20. log3
x3y2

27z
1
2

= 3 log3 x + 2 log3 y − log3 27 − 1
2
log3 z = 3 log3 x + 2 log3 y − 3 − 1

2
log3 z

21. ln(e−2.4x6) = −2.4 + 6 ln x

22. log5
125x3

0.2y2 = log5 53 + 3 log5 x − log5
1
5
− 2 log5 y = 4 + 3 log5 x − 2 log5 y

23. 3 log2 x + log2 30 + log2 y − log2 w = log2
30x3y

w
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24. 2 ln x − ln y + a ln w = ln x2 − ln y + ln wa = ln x2wa

y

25. 12(ln x + ln y) = ln(xy)12

26. log3 e × ln 81 + log3 5 × log5 w = log3 81 + log3 w = 4 + log3 w

27. log7 10 × log10 x2 − log7 49x = log7 x2 − log7 49 − log7 x = −2 + log7
x2

x
= −2 + log7 x

28. log10 0.1× log6 x− 2 log6 y + log6 4× log4 e = −1× log6 x− log6 y2 + log6 e = log6
e

xy2

29. log5 e = 1
loge 5

≈ 1
1.6094

≈ 0.6213

30. log5 7 = log5 e × loge 7 = loge 7
loge 5

≈ 1.9459
1.6094

≈ 1.2091

31. log5 72 = log5 e × 2 loge 7 = 2 loge 7
loge 5

≈ 2 × 1.9459
1.6094

≈ 2.4182

32. log49 5 = log49 e × loge 5 = loge 5
loge 49

= loge 5
loge 72 ≈ 1.6094

2×1.9459
≈ 0.4135

33. log49 25 = log49 e × loge 52 = loge 52

loge 72 ≈ 2×1.6094
2×1.9459

≈ 0.8271

34. loge 25 = loge 52 ≈ 2 × loge 5 ≈ 2 × 1.6094 ≈ 3.2188
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